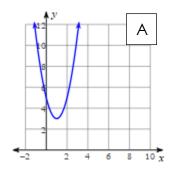
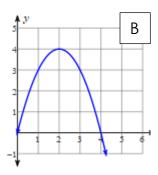
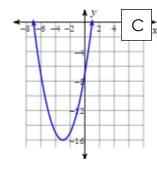
Unit 3 Review! Graphing Quadratics

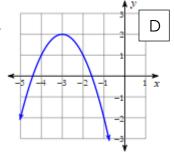
A) For each of the following determine the vertex and axis of symmetry.

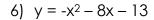
1) f((x) = (x -	$(-3)^2 - 4$	

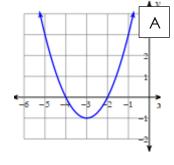

2)
$$f(x) = -2(x+2)^2 - 1$$

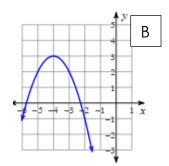

3)
$$y = 2x^2 - 4x + 5$$

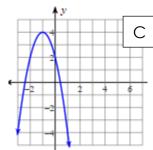

4)
$$y = -x^2 - 8x + 13$$

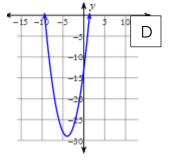

B) Determine which of the following graphs best represent the equation given

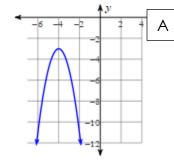

5)
$$y = 2x^2 - 4x + 5$$

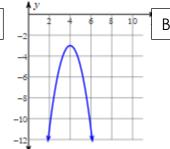


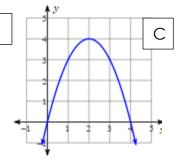


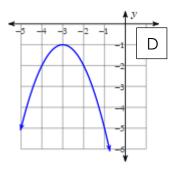




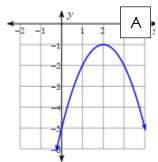


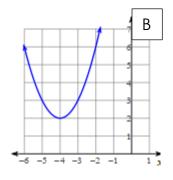


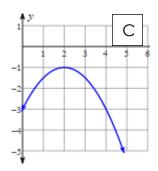


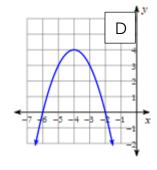


7)
$$y = -(x + 3)^2 - 1$$





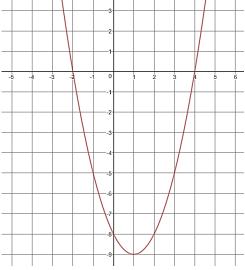




8)
$$y = -\frac{1}{2}(x-2)^2 - 1$$

C) Decoding word problems (matching) Given the bank of quadratic equations select ALL of the equations that match the situation given

(Hint-You may want to get them all into vertex form first so you can analyze them easier)


A) $y = -(x + 7)^2 - 2$	B) $y = -x^2 - 6x - 10$	C) $y = 2(x - 5)^2 - 1$
D) $y = x^2 + 6x + 6$	E) $y = \frac{1}{4}(x+1)^2 + 2$	F) $y = 4x^2 - 16x + 19$

- 9) Which equations have a positive infinity end behavior?
- 10) Which of the equations have a negative infinity end behavior?
- 11) Which of the equations would have a vertex above the x-axis?
- 12) Which of the equations would have a vertex below the x-axis?
- 13) Which of the following have a positive value for the axis of symmetry?
- 14) Which of the following would be transformed by being narrower than the parent function?
- 15) Which functions would have a left transformation?

Part D: Analyzing a graph

Given the graph below answer the following questions:

- 16) Vertex:_____
- 17) Axis of Symmetry:_____
- 18) Zeros:_____
- 19) Y-intercept:_____

Part E: Application

A frog is about to hop from the bank of a creek. The path of the jump can be modeled by the equation $h(x) = -x^2 + 4x + 1$, where h(x) is the frog's height above the water and x is the number of seconds since the frog jumped.

20) At what time does the frog reach its maximum height?

21) What is the **maximum height** of the frog at this point in time?